Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights

نویسندگان

  • LAURENT BARATCHART
  • MAXIM L. YATTSELEV
چکیده

We design convergent multipoint Padé interpolation schemes to Cauchy transforms of non-vanishing complex densities with respect to Jacobi-type weights on analytic arcs, under mild smoothness assumptions on the density. We rely on the work [10] for the choice of the interpolation points, and dwell on the Riemann-Hilbert approach to asymptotics of orthogonal polynomials introduced in [33] in the case of a segment. We also elaborate on the ∂̄ -extension of the RiemannHilbert technique, initiated in [37] on the line to relax analyticity assumptions. This yields strong asymptotics for the denominator polynomials of the multipoint Padé interpolants, from which convergence follows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergent Interpolation to Cauchy Integrals over Analytic Arcs

We consider multipoint Padé approximation to Cauchy transforms of complex measures. We show that if the support of a measure is an analytic Jordan arc and if the measure itself is absolutely continuous with respect to the equilibrium distribution of that arc with Dini-smooth non-vanishing density, then the diagonal multipoint Padé approximants associated with appropriate interpolation schemes c...

متن کامل

A Uniformly Convergent Sequence of Spline Quadratures for Cauchy Principal Value Integrals

We propose a new quadrature rule for Cauchy principal value integrals based on quadratic spline quasi-interpolants which have an optimal approximation order and satisfy boundary interpolation conditions. In virtue of these spline properties, we can prove uniform convergence for sequences of such quadratures and provide uniform error bounds. A computational scheme for the quadrature weights is g...

متن کامل

Research Article Solution of Cauchy-Type Singular Integral Equations of the First Kind with Zeros of Jacobi Polynomials as Interpolation Nodes

Of concern in this paper is the numerical solution of Cauchy-type singular integral equations of the first kind at a discrete set of points. A quadrature rule based on Lagrangian interpolation, with the zeros of Jacobi polynomials as nodes, is developed to solve these equations. The problem is reduced to a system of linear algebraic equations. A theoretical convergence result for the approximat...

متن کامل

Asymptotic estimation of Gaussian quadrature error for a nonsingular integral in potential theory

This paper considers the n-point Gauss-Jacobi approximation of nonsingular integrals of the form ∫ 1 −1 μ(t)φ(t) log(z− t) dt, with Jacobi weight μ and polynomial φ, and derives an estimate for the quadrature error that is asymptotic as n → ∞. The approach follows that previously described by Donaldson and Elliott. A numerical example illustrating the accuracy of the asymptotic estimate is pres...

متن کامل

Solution of Cauchy-Type Singular Integral Equations of the First Kind with Zeros of Jacobi Polynomials as Interpolation Nodes

Of concern in this paper is the numerical solution of Cauchy-type singular integral equations of the first kind at a discrete set of points. A quadrature rule based on Lagrangian interpolation, with the zeros of Jacobi polynomials as nodes, is developed to solve these equations. The problem is reduced to a system of linear algebraic equations. A theoretical convergence result for the approximat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010